產(chǎn)品詳情
張家界市熱固復合聚苯乙烯泡沫定做
外墻保溫聚苯板由粘結(jié)層、保溫裝飾成品板、錨固件、密封材料等組成。它不僅適用于新建筑的外墻保溫和裝飾,也適用于老建筑的節(jié)能和裝修改造。不僅適用于各類公共建筑,也適用于住宅建筑的外墻保溫;適用于北方寒冷地區(qū)和南方炎熱地區(qū)的建筑。
運用多步接枝工藝,實現(xiàn)了摻雜Ti O2粒子(M系列)的表面改性,制備出系列M粒子-氰酸酯樹脂(CE)復合材料。研究了復合材料的摩擦力學性能及洛氏硬度的變化。結(jié)果表明,加入少許M系列粒子(質(zhì)量分數(shù)4%)后,可以使得氰酸酯樹脂(CE)的摩擦力學性能得到改善。當復合材料中M-2粒子的含量為3wt%時,摩擦系數(shù)下降36%,摩擦消耗下降約60%,增強了復合材料的耐磨性;當M-2粒子的含量為4wt%時,復合體系洛氏硬度提高了10.4%。
外墻保溫聚苯板是將聚苯乙烯板放置在建筑墻體表面的保溫和裝飾系統(tǒng)上,保溫效果優(yōu)良且經(jīng)久耐用,冷橋效果較差,節(jié)能保溫效果好。從系統(tǒng)設(shè)計、主要原料的選擇和支持材料,無塵車間的全自動生產(chǎn)、加工技術(shù)、節(jié)點冷橋和建筑細節(jié),根據(jù)65%的建筑節(jié)能設(shè)計要求,比傳統(tǒng)的節(jié)能保溫施工實踐具有更優(yōu)異的保溫功能。
熱固復合聚苯乙烯泡沫具體的角色可以分為以下幾個:
1. 有效降低能源消耗傳統(tǒng)的外墻保溫板一般采用擠壓板、酚醛板等易燃材料。近年來,因外墻保溫材料引起的火災事故時有發(fā)生。因此,現(xiàn)代外墻保溫板要求防火等級達到一定水平 。
2. 保溫系統(tǒng)主要由泡沫鎂水泥和EPS顆粒組成,具有良好的防火保溫性能。適用于民用建筑、廠房外墻、冷庫等外部保溫系統(tǒng)。
3.主要結(jié)構(gòu)有粘結(jié)層、保溫層、抹灰層、裝飾層四層。其中裝飾面層選用裝飾砂漿、裝飾砂漿等水性外墻涂料。
4. 建筑節(jié)能使室內(nèi)環(huán)境更加穩(wěn)定、舒適,有效提高居住環(huán)境水平。為消費者提供良好的居住環(huán)境。
張家界市熱固復合聚苯乙烯泡沫定做將溫拌技術(shù)運用于OGFC(開級配排水式瀝青磨耗層)混合料的施工作業(yè)中.測試了溫拌OGFC混合料、熱拌OGFC混合料的空隙率、肯塔堡飛散損失、馬歇爾穩(wěn)定度、流值等基本性能.結(jié)果表明:溫拌OGFC混合料的拌和溫度可以比熱拌OGFC混合料下降25℃左右;溫拌OGFC混合料基本性能與未加溫拌劑的熱拌OGFC混合料相差不大.添加溫拌劑給OGFC混合料攤鋪溫度提供一個更寬的范圍,從而可有效提高其施工質(zhì)量.
外墻保溫聚合聚苯板作為裝飾保溫材料,主要部分節(jié)能與建筑與凹凸型相結(jié)合,通過類似兼容的粘貼體系和固定體系主體的固定方式相互配合,并在空氣層加工體系和防水體系中長期與節(jié)能、裝飾與建筑相結(jié)合的整體美學效果。類似于每個年級通過焊接防火保溫板組成,機械和其他化學或物理的方法,成分相對的結(jié)構(gòu)相似或接近,因此,即使在溫度變化,陽光、雨、霜,寒冷、高溫、酸和堿和其他惡劣的環(huán)境,可以保證系統(tǒng)的穩(wěn)定性。
防火阻燃性能良好
(1)不可燃:特殊的蜂窩狀防火隔離艙結(jié)構(gòu),使產(chǎn)品防火等級為A級
(2)耐高溫:使用溫度可以達1000°C,熔點可以到1500°C以上
(3)無形變:高溫大火中不軟化變形、不滴落流淌、不脫落
(4)穩(wěn)定可靠:過火后,物理強度與保溫性能幾乎沒有損失,依然可以繼續(xù)使用
(5)壽命長:聚合物聚苯板采用無機材料形成的蜂窩狀隔離艙強度大,與建筑本同壽命,不許后期更換保溫層。
張家界市熱固復合聚苯乙烯泡沫定做利用MTS-810型機測試復合材料橋梁的彎曲性能,得到復合材料橋梁載荷-撓度曲線和彎曲破壞形態(tài)?;趶秃喜牧蠘蛄旱恼鎸嵔Y(jié)構(gòu),建立連續(xù)實體殼單元橋梁模型,運用商用有限元軟件Abaqus/Explicit計算橋梁的彎曲破壞過程。計算得到的載荷-撓度曲線與試驗具有較好的一致性;破壞位置均發(fā)生在支撐輥的位置;復合材料橋梁的破壞模式主要表現(xiàn)為纖維斷裂、基體開裂、分層破壞以及腹板屈曲失穩(wěn)。研究結(jié)果表明,有限元法用于復合材料橋梁的性能預測和優(yōu)化設(shè)計是有效的。
通過對帶(預制)裂縫混凝土試件進行明火升溫試驗,研究高溫下裂縫對混凝土溫度場的影響.依據(jù)傳熱理論分析建立帶裂縫混凝土試件截面溫度計算模型,然后用數(shù)學軟件MATLAB進行數(shù)值計算并與試驗結(jié)果進行對比.結(jié)果表明:高溫下裂縫區(qū)域的主要傳熱方式為熱傳導;相對于無裂縫處,有裂縫處測點溫度更高;總體上測點的溫度隨裂縫寬度的增大而增大,遠離裂縫的測點溫度受裂縫的影響較小;不同測點的計算與實測升溫曲線總體變化趨勢一致,依據(jù)傳熱理論分析建立的帶裂縫混凝土試件截面溫度計算模型較為可靠.